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CLASS XI

CHAPTER 3

3.6. Proofs and Simple Applications of sine and cosine formulae

Let ABC be a triangle. By angle A we mean the angle between
the sides AB and AC which lies between 0° and 180°. The angles
B and C are similarly defined. The sides AB, BC and CA opposite
to the vertices C, A and B will be denoted by c, a and b,
respectively (see Fig. 3.15).

Theorem 1 (sine formula) In any triangle, sides are proportional

to the sines of the opposite angles. That is, in a triangle

ABC

sin A sin B sin C

a b c
= =

Proof Let ABC be either of the triangles as shown in Fig. 3.16 (i) and (ii).
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(i) (ii)
Fig. 3.16

The altitude h is drawn from the vertex B to meet the side AC in point D [in (i) AC is produced to meet the
altitude in D]. From the right angled triangle ABD in Fig. 3.16(i), we have

sin A = ,
h

c
 i.e., h = c sin A (1)

and sin (180° – C) = sinC⇒ =
h

h a
a

(2)

From (1) and (2), we get

c sin A = a sin C, i.e., 
sin A sin C

=
a c

(3)

Fig. 3.15
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Similarly, we can prove that

sin A sin B
=

a b
(4)

From (3) and (4), we get

sin A sin B sin C
=

a b c
=

For triangle ABC in Fig. 3.16 (ii), equations (3) and (4) follow similarly.

Theorem 2 (Cosine formulae) Let A, B and C be angles of a triangle and  a, b and c be lengths of sides
opposite to angles A, B and C, respectively, then

2 2 2

2 2 2

2 2 2

2 cos A

2 cos B

2 cos C

a b c bc

b c a ca

c a b ab

= + −

= + −

= + −
Proof Let ABC be triangle as given in Fig. 3.17 (i) and (ii)
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Fig. 3.17

Referring to Fig.3.17 (ii), we have
2 2 2 2 2BC BD DC BD (AC AD)= + = + −

        2 2 2BD AD AC 2AC.AD= + + −

        2 2AB AC 2AC ABcos A= + −
or     a2 = b2 + c2 – 2bc cosA
Similarly, we can obtain

2 2 2 2 cos Bb c a ca= + −
and 2 2 2 2 cos Cc a b ab= + −
Same equations can be obtained for Fig. 3.17 (i), where C is obtuse.
A convenient form of the cosine formulae, when angles are to be found are as follows:

2 2 2

2 2 2

2 2 2

cos A
2

cos B
2

cos C
2

b c a

bc

c a b

ac

a b c

ab

+ −
=

+ −
=

+ −
=
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Example 25 In triangle ABC, prove that

B C A
tan cot

2 2
C A B

tan cot
2 2

A B C
tan cot

2 2

b c

b c
c a

c a
a b

a b

− −
=

+
− −

=
+

− −
=

+

Proof By sine formula, we have

( ).
sin A sin B sin C

a b c
k say= = =

Therefore,    
(sin B sin C)

(sin B sin C)

b c k

b c k

− −
=

+ +

B C B C
2cos sin

2 2
B C B C

2sin cos
2 2

+ −

=
+ −

(B+C) (B – C)
cot tan

2 2
=

A B – C
cot tan

2 2 2

π⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

B – C
tan

2
A

cot
2

=

Therefore,
B – C A

tan cot
2 2

b c

b c

−
=

+
Similarly, we can prove other results. These results are well known as Napier’s Analogies.

Example 26 In any triangle ABC, prove that
a sin (B – C) + b sin  (C – A) + C sin (A – B) = 0

Solution Consider
a sin (B – C) = a [sinB cosC – cosB sinC] (1)

Now
sin A sin B sin C

(say)k
a b c

= = =

Therefore, sin A = ak, sin B = bk, sin C = ck
Substituting the values of sinB and sinC in (1) and using cosine formula, we get

2 2 2 2 2 2

sin(B C)
2 2

a b c c a b
a a bk ck

ab ac

⎡ ⎤⎛ ⎞ ⎛ ⎞+ − + −
− = −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦



4

( )
)(

2
22

222222

cbk

baccba
k

−=

+−−−+=

Similarly, b sin (C – A) = k (c2 – a2)
and csin (A – B) = k (a2 – b2)
Hence L.H.S = k (b2 – c2 + c2 – a2 + a2 – b2)

= 0 = R.H.S.
Example 27  The angle of elevation of the top point P of the vertical tower PQ of height h from a point A

is 45° and from a point B, the angle of elevation is 60°, where B is a point at a distance d
from the point A measured along the line AB which makes an angle 30° with AQ.

Prove that ( 3 –1)d h=
Proof From the Fig. 3.18, we have ∠PAQ = 45°, ∠BAQ = 30°, ∠ PBH = 60°

P

QA

HB

h

45°
30°

60°

15°

d

Fig. 3.18

Clearly APQ 45 , BPH 30 , giving APB 15∠ = ° ∠ = ° ∠ = °

Again  PAB 15 ABP 150∠ = ° ⇒ ∠ = °
From triangle APQ, we have AP2 = h2 + h2 = 2h2 (Why ?)

or AP 2h=
Applying sine formula in Δ ABP, we get

AB AP 2

sin15 sin150 sin15 sin150

d h
= ⇒ =

° ° ° °

i.e.,
2 sin15

sin 30

h
d

°
=

°

( 3 1)h= − (why?)

Example 28 A lamp post is situated at the middle point M of the side AC of a triangular plot ABC with
BC = 7m, CA = 8m and AB = 9 m. Lamp post subtends an angle 15° at the point B.
Determine the height of the lamp post.

Solution From the Fig. 3.19, we have AB = 9 = c, BC = 7 = a and AC = 8 = b.
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Fig.3.19
M is the mid point of the side AC at which lamp post MP of height h (say) is located. Again, it is given
that lamp post subtends an angle  θ (say) at B which is 15°.
Applying cosine formula in ΔABC, we have

2 2 2 49 64 81 2
cos C (1)

2 2 7 8 7

a b c

ab

+ − + −
= = =

× ×
Similarly using cosine formula in ΔBMC, we get

BM2 = BC2 + CM2 – 2 BC × CM cos C.

Here  
1

CM= CA=4
2

, since M is the mid point of AC.

Therefore, using (1), we get

BM2 = 49 + 16 – 2 × 7 × 4 × 
2

7
= 49

or BM = 7
Thus, from ΔBMP right angled at M, we have

PM
tan

BM 7

h
θ = =

or tan(15 )
7

h
= ° = 2 3− (why ?)

or h = 7(2 3) m− .
EXERCISE 3.5

In any triangle ABC, if a = 18, b = 24, c = 30, find

1. cosA, cosB, cosC (Ans.
4

5
, 

3

5
, 0) 2. sinA, sinB, sinC  (Ans.

3

5
, 

4

5
, 1)

    For any triangle ABC, prove that

3.  

A B
cos

2
C

sin
2

a b

c

−⎛ ⎞
⎜ ⎟+ ⎝ ⎠= 4. 

A B
sin

2
C

cos
2

a b

c

−⎛ ⎞
⎜ ⎟− ⎝ ⎠=
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5.  
B C A

sin cos
2 2

b c

a

− −
= 6.   a (b cos C – c cos B) = b2 – c2

7.  a (cos C – cos B) = 2 (b – c) cos2 
A

2
8.  

2 2

2

sin(B – C)

sin(B + C)

−
=

b c

a

9. 
B C B C

( )cos cos
2 2

b c a
+ −

+ = 10.  cos A cos B cosC 2 sin Bsin Ca b c a+ + =

11. 
2 2 2cos A cos B cos C

2

a b c

a b c abc

+ +
+ + =    12.  (b2 – c2) cotA + (c2 – a2) cotB + (a2 – b2) cotC = 0

13. 
2 2 2 2 2 2

2 2 2
sin 2A sin 2B sin 2C 0

b c c a a b

a b c

− − −
+ + =

14. A tree stands vertically on a hill side which makes an angle of 15° with the horizontal. From a point
on the ground 35m down the hill from the base of the tree, the angle of elevation of the top of the tree

is 60°. Find the height of the tree. (Ans. 35 2m )
15. Two ships leave a port at the same time. One goes 24 km per hour in the direction N45°E and other

travels 32 km per hour in the direction S75°E. Find the distance between the ships at the end of
3 hours. (Ans. 86.4 km (approx.))

16. Two trees, A and B are on the same side of a river. From a point C in the river the distance of the
trees A and B is 250m and 300m, respectively. If the angle C is 45°, find the distance between the

trees (use 2  =1.44). (Ans. 215.5 m)

CHAPTER 5

5.7. Square-root of a Complex Number

We have discussed solving of quadratic equations involving complex roots on page 108-109 of textbook.
Here we explain the particular procedure for finding square root of a complex number expressed in the
standard form. We illustrate the same by an example.
Example 12 Find the square root of  –7 –24i

Solution Let  7 24x iy i+ = − −

Then ( ) iiyx 2472 −−=+

or ixyiyx 247222 −−=+−
Equating real and imaginary parts, we have

x2 – y2 = –7 (1)
2xy = –24

We know the identity

( ) ( )2 22 2 2 2 2(2 )x y x y xy+ = − +

= 49 + 576
= 625

Thus, x2 + y2 = 25 (2)
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From (1) and (2), x2 = 9 and y2 = 16
or x = ± 3 and y = ±4

Since the product xy is negative, we have
x = 3, y = – 4 or, x = –3, y = 4

Thus, the square roots of –7 –24i are 3 –4i and –3 + 4i

EXERCISE 5.4
Find the square roots of the following:

1. –15 –8i ( Ans. 1 –4i, –1 + 4i) 2. –8 –6i (Ans. 1 –3i, –1 + 3 i)

3. 1 –i (Ans. ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −+
± i

2

12

2

12
μ ) 4. –i (Ans. 

1 1

2 2
i

⎛ ⎞±⎜ ⎟
⎝ ⎠

m )

5. i (Ans. 
1 1

2 2
i

⎛ ⎞± ±⎜ ⎟
⎝ ⎠

) 6. 1 + i (Ans. 
2 1 2 1

2 2
i

⎛ ⎞+ −⎜ ⎟± ±
⎜ ⎟
⎝ ⎠

)

CHAPTER 9

9.7. Infinite G.P. and its Sum

G. P. of the form a, ar, ar2, ar3, ... is called infinite G. P. Now, to find the formula for finding sum to infinity
of a G. P., we begin with an example.
Let us consider the G. P.,

2 4
1, , ,...

3 9

Here a = 1, 
2

3
r = . We have

2
1

23
S 3 1

2 31
3

n

n

n

⎛ ⎞−⎜ ⎟ ⎡ ⎤⎛ ⎞⎝ ⎠= = −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦−

Let us study the behaviour of 
2

3

n
⎛ ⎞
⎜ ⎟
⎝ ⎠

 as n becomes larger and larger:

  n 1 5 10 20

2

3

n
⎛ ⎞
⎜ ⎟
⎝ ⎠

0.6667 0.1316872428 0.01734152992 0.00030072866

We observer that as n becomes larger and larger, 
2

3

n
⎛ ⎞
⎜ ⎟
⎝ ⎠

becomes closer and closer to zero. Mathemati-

cally, we say that as n becomes sufficiently large, 
2

3

n
⎛ ⎞
⎜ ⎟
⎝ ⎠

 becomes sufficiently small. In other words as
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2
, 0.

3

n

n ⎛ ⎞→ ∞ →⎜ ⎟
⎝ ⎠

Consequently, we find that the sum of infinitely many terms is given by S 3.∞ =

Now, for a geometric progression, a, ar, ar2, ..., if  numerical value of common ratio r is less than 1, then

(1 )
S

(1 ) 1 1

n n

n

a r a ar

r r r

−
= = −

− − −

In this case as ,→∞n rn → 0 since |r| < 1. Therefore

1
→

−n

a
S

r

Symbolically sum to infinity is denoted by S or S.∞

Thus, we have S 1–

a

r
= .

For examples

(i) 2 3

1 1 1 1
1 ... 2.

12 2 2 1
2

+ + + + = =
−

(ii) 2 3

1 1 1 1 1 2
1 ...

112 2 2 311
22

− + − + = = =
−⎛ ⎞ +−⎜ ⎟

⎝ ⎠

EXERCISE 9.4

Find the sum to infinity in each of the following Geometric Progression.

1. 1, 
1

3
, 

1

9
, ... (Ans. 1.5) 2. 6, 1.2, .24, ... (Ans. 7.5)

3. 5, 
20 80

, ,...
7 49

(Ans. 
35

3
) 4.

3 3 3
, , ,...

4 16 64

− −
(Ans. 

3

5

−
)

5. Prove that 
11 1

82 43 3 3 ... 3× × =
6. Let x = 1 + a + a2 + ... and y = 1 + b + b2 + ..., where |a| < 1 and |b| < 1. Prove that

     1 + ab + a2b2 + ... = 1

xy

x y+ −

CHAPTER 10

10.6 Equation of family of lines passing through the point of intersection of two lines
Let the two intersecting lines l

1
 and l

2
 be given by

1 1 1A B C+ +x y = 0 (1)

and 2 2 2A B C+ +x y = 0 (2)

From the equations (1) and (2), we can form an equation

( )1 1 1 2 2 2A B C A B C+ + + + +x y k x y = 0 (3)
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where k is an arbitrary constant called parameter. For any value of  k, the equation (3) is of first degree in
x and y. Hence it represents a family of lines. A particular member of this family can be obtained for some
value of  k. This value of  k may be obtained from other conditions.
Example 20 Find the equation of line parallel to the y-axis and drawn through the point of intersection of
x – 7y + 5 = 0 and 3x + y – 7 = 0
Soluion The equation of any line through the point of intersection of the given lines is of the form

075)7()31(.,.

0)73(57

=−+−++
=−+++−

kykxkei

yxkyx
(1)

If this line is parallel to y-axis, then the coefficient of y should be zero, i.e., k – 7 = 0 which gives
k = 7.
Substituting this value of k in the equation (1), we get

22x – 44 = 0,    i.e.,   x –2 = 0, which is the required equation.

EXERCISE 10.4

1. Find the equation of the line through the intersection of lines 3x + 4y = 7 and x – y + 2 = 0 and
whose slope is 5.

(Ans. 35x – 7y + 18 = 0 )

2. Find the equation of the line through the intersection of lines x + 2y – 3 = 0 and 4x – y + 7 =0 and
which is parallel to 5x + 4y –20 = 0

(Ans. 15x + 12y – 7 = 0)

3. Find the equation of the line through the intersection of the lines 2x + 3y – 4 = 0 and
x – 5y = 7 that has its x-intercept equal to – 4.

(Ans. 10x + 93y + 40 = 0. )

4. Find the equation of the line through the intersection of 5x –3y = 1 and 2x + 3y – 23 = 0 and
perpendicular to the line 5x – 3y – 1 = 0.

(Ans. 63x + 105y – 781 = 0.)

10.7. Shifting of origin
An equation corresponding to a set of points with reference
to a system of coordinate axes may be simplified by taking
the set of points in some other suitable coordinate system
such that all geometric properties remain unchanged. One
such transformation is that in which the new axes are
transformed parallel to the original axes and origin is shifted
to a new point. A transformation of this kind is called a
translation of axes.

The coordinates of each point of the plane are
changed under a translation of axes. By knowing the
relationship between the old coordinates and the new
coordinates of points, we can study the analytical problem
in terms of new system of coordinate axes.

To see how the coordinates of a point of the plane changed under a translation of axes, let us take
a point P (x, y) referred to the axes OX and OY. Let O′X′ and O′Y′  be new axes parallel to OX and OY
respectively, where O′ is the new origin. Let (h, k) be the coordinates of  O′ referred to the old axes, i.e.,
OL = h and LO′ = k. Also, OM = x and MP = y (see Fig.10.21)

Fig. 10.21

Y
Y'

X'

XLO
h

k

0' M'

M

P{( , ) ( ', ')}x y x y
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Let O′ M′  = x′  and M′P = y′  be respectively, the abscissa and ordinates of a point P referred to
the new axes O′ X′  and O′ Y′ . From Fig.10.21, it is easily seen that

OM = OL + LM, i.e., x = h + x′
and MP = MM′  + M′ P,  i.e., y = k + y′
Hence, x = x′  + h, y = y′  + k

These formulae give the relations between the old and new coordinates.
Example 21 Find the new coordinates of point (3, – 4) if the origin is shifted to  (1, 2) by a translation.
Solution The coordinates of the new origin are h = 1, k =2, and the original coordinates are given to be x
= 3, y = –4.

The transformation relation between the old coordinates (x,  y) and the new coordinates
(x′, y′) are given by

x = x′  + h i.e., x′  = x – h
and y = y′  + k i.e., y′  = y – k
Substituting the values, we have
x′  = 3 – 1 = 2 and y′  = – 4 – 2 = –6

Hence, the coordinates of the point (3, – 4) in the new system are (2, – 6).
Example 22  Find the transformed equation of the straight line 2x – 3y + 5 = 0, when the origin is shifted
to the point (3, –1) after translation of axes.
Solution Let coordinates of a point P changes from (x, y) to (x′ , y′ ) in new coordinate axes whose origin
has the coordinates  h = 3, k = –1. Therefore, we can write the transformation formulae as
x = x′ + 3 and y = y′ –1. Substituting, these values in the given equation of the straight line, we get

2(x′  + 3)  –3 (y′  – 1) + 5 = 0
or 2x′  – 3y′  + 14 = 0
Therefore, the equation of the straight line in new system is 2x – 3y + 14 = 0

EXERCISE 10.5

1. Find the new coordinates of the points in each of the following cases if the origin is shifted to the
point (–3, –2) by a translation of axes.
(i) (1, 1) (Ans (4, 3)) (ii) (0, 1) (Ans. (3, 3)) (iii) (5, 0) (Ans. (8, 2) )
(iv) (–1, –2) (Ans. (2, 0)) (v) (3, –5) (Ans. (6, –3))

2. Find what the following equations become when the origin is shifted to the point (1, 1)

(i)  023 22 =+−−+ yyxyx (Ans. 2 23 3 6 1 0x y xy x y− + + − + = )

(ii)  02 =+−− yxyxy (Ans. 02 =− yxy )

(iii)  01=+−− yxxy (Ans. 0=xy )

CHAPTER 13

13.5. Limits involving exponential and logarithmic functions

Before discussing evaluation of limits of the expressions involving exponential and logarithmic functions,
we introduce these two functions stating their domain, range and also sketch their graphs roughly.
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Leonhard Euler (1707AD – 1783AD), the great Swiss mathematician introduced the number e whose
value lies between 2 and 3. This number is useful in defining exponential function and is defined as
f (x) = ex, x ∈ R. Its domain is R, range is the set of positive real numbers. The graph of exponential
function, i.e., y =  ex is as given in Fig.13.11.

Similarly, the logarithmic function expressed as log :e
+ →R R is given by loge x y= ,  if and only

if ey = x. Its domain is R+ which is the set of all positive real numbers and range is R. The graph of

logarithmic function  y = loge x  is shown in Fig.13.12.

Fig. 13.12

Y

X

graph of log y = xe

O

In order to prove the result 1
1

lim
0

=
−

→ x

ex

x
, we make use of an inequality involving the expression

x

ex 1−
 which runs as follows:

1

1 x
≤

+  
x

ex 1−
 ≤  1 + (e – 2) |x| holds for all x in [–1, 1] ~ {0}.

Fig.13.11

Y

X

graph of  = y ex
O
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Theorem 6 Prove that 1
1

lim
0

=
−

→ x

ex

x

Proof Using above inequality, we get

1

1 x
≤

+  
x

ex 1−
 ≤ 1 + | x| (e – 2), x ∈ [–1, 1] ~ {0}

Also 1
01

1

lim1

1

1

1
lim

0
0

=
+

=
+

=
+

→
→ xx

x
x

and [ ] 10)2(1lim)2(1)2(1lim
00

=−+=−+=−+
→→

exexe
xx

Therefore, by Sandwich theorem, we get

1
1

lim
0

=
−

→ x

ex

x

Theorem 7 Prove that 1
)1(log

lim
0

=
+

→ x

xe

x

Proof Let y
x

xe =
+ )1(log

. Then

log (1 )e x xy+ =

1 xyx e⇒ + =

1
1

xye

x

−
⇒ =

or 1.
1

=
−

y
xy

exy

0 0

1
lim lim 1(since 0 gives 0)

xy

xy x

e
y x xy

xy→ →

−
⇒ = → →

0 0

1
lim 1 as lim 1

xy

x xy

e
y

xy→ →

⎛ ⎞−
⇒ = =⎜ ⎟

⎝ ⎠

0

log (1 )
lim 1e

x

x

x→

+
⇒ =

Example 5 Compute 
x

e x

x

1
lim

3

0

−
→

Solution We have

3 3

0 3 0

0

1 1
lim lim 3

3

1
3 lim , where 3

3.1 3

x x

x x

y

y

e e

x x

e
y x

y

→ →

→

− −
= ⋅

⎛ ⎞−
= =⎜ ⎟

⎝ ⎠
= =
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Example 6 Compute 
0

sin 1
lim

x

x

e x

x→

− −

Solution We have   0 0

sin 1 1 sin
lim lim

x x

x x

e x e x

x x x→ →

⎡ ⎤− − −
= −⎢ ⎥

⎣ ⎦

0 0

1 sin
lim lim 1 1 0

x

x x

e x

x x→ →

−
= − = − =

Example 7 Evaluate
1

log
lim

1 −→ x

xe

x

Solution Put x = 1 + h, then as 1 0x h→ ⇒ → . Therefore,

1 0

log log (1 )
lim lim

1
e e

x h

x h

x h→ →

+
=

− 0

log (1 )
1 since lim 1e

x

x

x→

+⎛ ⎞= =⎜ ⎟
⎝ ⎠

EXERCISE 13.2
Evaluate the following limits, if exist

1.
4

0

1
lim

x

x

e

x→

−
(Ans. 4) 2.

x

ee x

x

22

0
lim

−+

→
(Ans. e2)

3.
5

5
lim

5

x

x

e e

x→

−
−

(Ans. e5) 4.
x

e x

x

1
lim

sin

0

−
→

(Ans. 1)

5.
3

lim
3

3 −
−

→ x

eex

x
(Ans. e3) 6.

x

ex x

x cos1

)1(
lim

0 −
−

→
(Ans. 2)

7.
x

xe

x

)21(log
lim

0

+
→

(Ans. 2) 8.
3

30

log (1 )
lim

sinx

x

x→

+
(Ans. 1)
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Annexure II

CLASS XII

CHAPTER 5

Theorem 5 (To be inserted on page 173 under the heading theorem 5)

(i) Derivative of Exponential Function f(x) = ex.

If f(x) = ex, then

f '(x) =
0

( ) ( )
lim
Δ →

+ Δ −
Δx

f x x f x

x

=
0

lim
+Δ

Δ →

−
Δ

x x x

x

e e

x

=
0

1
lim

Δ

Δ →

−
⋅

Δ

x
x

x

e
e

x

= 1⋅xe  [since
0

1
lim 1
→

−
=

h

h

e

h
]

Thus,    ( ) .=x xd
e e

dx

(ii) Derivative of logarithmic function f(x) = log
e
x.

 If f(x) = log
e
x,  then

f '(x) =
0

log ( ) log
lim e e

x

x x x

xΔ →

+ Δ −
Δ

=
0

log 1
lim
Δ →

Δ⎛ ⎞+⎜ ⎟
⎝ ⎠
Δ

e

x

x
x

x

= 0

log 1
1

lim
e

x

x
x

xx
x

Δ →

Δ⎛ ⎞+⎜ ⎟
⎝ ⎠
Δ

=
1

x
  [since 

0

log (1 )
lim 1e

h

h

h→

+
= ]

Thus, loge

d
x

dx
=

1

x
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CHAPTER 7

7.6.3. 2( ) .+ + +∫ px q ax bx c dx

We choose constants A and B such that

px + q =
2A ( ) B⎡ ⎤+ + +⎢ ⎥⎣ ⎦

d
ax bx c

dx

= A(2ax + b) + B

Comparing the coefficients of x and the constant terms on both sides, we get

2aA = p and Ab + B = q

Solving these equations, the values of A and B are obtained. Thus, the integral reduces to

2 2A (2 ) Bax b ax bx c dx ax bx c dx+ + + + + +∫ ∫
= 1 2AI + BI

       where I
1

= 2(2 )+ + +∫ ax b ax bx c dx

Put ax2 + bx + c = t, then (2ax + b)dx = dt

       So I
1

=
3

2 2
1

2
( ) C

3
+ + +ax bx c

       Similarly, I
2

= 2 + +∫ ax bx c dx

is found, using the integral formula discussed in [7.6.2, Page 328 of the textbook].

Thus 2( )+ + +∫ px q ax bx c dx  is finally worked out.

Example 25 Find 21+ −∫ x x x dx

Solution Following the procedure as indicated above, we write

x = ( )2A 1 B
d

x x
dx
⎡ ⎤+ − +⎢ ⎥⎣ ⎦

= A (1 – 2x) + B

Equating the coefficients of x and constant terms on both sides,

We get – 2A = 1 and A + B = 0

Solving these equations, we get  A  = 
1

2
−  and 

1
B .

2
=  Thus the integral reduces to
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21+ −∫ x x x dx =
2 21 1

(1 2 ) 1 1
2 2

− − + − + + −∫ ∫x x x dx x x dx

= 1 2

1 1
I I

2 2
− + (1)

Consider I
1

= 2(1 2 ) 1− + −∫ x x x dx

Put 1 + x – x2 = t, then (1 – 2x)dx = dt

Thus I
1
 = 2(1 2 ) 1− + −∫ x x x dx =

1 3

2 2
1

2
C

3
t dt t= +∫

= ( )
3

2 2
1

2
1 C

3
+ − +x x , where C

1
 is some constant.

Further, consider I
2

=

2
2 5 1

1
4 2

⎛ ⎞+ − = − −⎜ ⎟
⎝ ⎠∫ ∫x x dx x dx

Put 
1

.
2

− =x t  Then dx = dt

Therefore, I
2

=

2

25

2

⎛ ⎞
−⎜ ⎟

⎝ ⎠
∫ t dt

=
2 1

2

1 5 1 5 2
sin C

2 4 2 4 5
−− + ⋅ +

t
t t

=
( ) 2 1

2

2 11 5 1 5 2 1
( ) sin

2 2 4 2 8 5
−− −⎛ ⎞− − + +⎜ ⎟
⎝ ⎠

x x
x C

=
2 1

2

1 5 2 1
(2 1) 1 sin

4 8 5
− −⎛ ⎞− + − + +⎜ ⎟
⎝ ⎠

x
x x x C , where C

2

is some constant.

Putting values of I
1
 and I

2
 in (1), we get

21+ −∫ x x x dx =
3

2 22
1 1

(1 ) (2 1) 1
3 8

− + − + − + −x x x x x

15 2 1
sin ,

16 5
− −⎛ ⎞+ +⎜ ⎟
⎝ ⎠

x
C

where C = 1 2C C

2

+
−  is another arbitrary constant.
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Insert the following exercises at the end of EXERCISE 7.7 as follows:

12. 2x x x+ 13. 2( 1) 2 3+ +x x 14.  2( 3) 3 4+ − −x x x

Answers

12.
3 2

2 22
1 (2 1) 1 1

( ) log | | C
3 8 16 2

x x x
x x x x x

+ +
+ − + + + + +

13.

3
2 2 22

1 3 2 3
(2 3) 2 3 log C

6 2 4 2
+ + + + + + +

x
x x x x

14.

3 2
2 12

1 7 2 ( 2) 3 4
(3 4 ) sin C

3 2 27
− + + − −⎛ ⎞− − − + + +⎜ ⎟
⎝ ⎠

x x x x
x x

CHAPTER 10

10.7     Scalar triple product   Let ,a b
rr

and r
c  be any three vectors.  The scalar product of r

a and

( )b c×
r r , i.e., ( )⋅ ×

rr r
a b c  is called the scalar triple product of ,a b

rr
and rc  in this order and is denoted by

[ ,a b
rr

, 
r
c ] (or [ a b c

rr r
]). We thus have

[ ,a b
rr

, 
r
c ] = ( )⋅ ×

rr r
a b c

Observations

1. Since ( )b c×
r r  is a vector, ( )⋅ ×

rr r
a b c  is a scalar quantity, i.e. [ ,a b

rr
, 

r
c ] is a scalar quantity.

2. Geometrically, the magnitude of the scalar triple
product is the volume of a parallelopiped formed by adjacent
sides given by the three vectors ,a b

rr
and r

c  (Fig. 10.28).
Indeed, the area of the parallelogram forming the base of the

parallelopiped is b c×
r r

. The height is the projection of
r
a along the normal to the plane containing b

r
and rc  which is

the magnitude of the component of r
a in the direction of  b c×

r r

i.e., 
.( )

( )

a b c

b c

×

×

rr r

r r . So the required volume of the parallelopiped

is
.( )

| | .( )
( )

a b c
b c a b c

b c

×
× = ×

×

rr r
r rr r r

r r ,

3. If 1 2 3 1 2 3 1 2 3
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, and ,a a i a j a k b b i b j b k c c i c j c k= + + = + + = + +

rr r
 then

Fig. 10.28
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b c×
r r  = 1 2 3

1 2 3

ˆˆ ˆi j k

b b b

c c c

          = (b
2
c

3
 – b

3
c

2
) î + (b

3
c

1
 – b

1
c

3
) ĵ  + (b

1
c

2
 – b

2
c

1
) k̂

and so

1 2 3 3 2 2 3 1 1 3 3 1 2 2 1.( ) ( – ) ( – ) ( – )a b c a b c b c a b c b c a b c b c× = + +
rr r

1 2 3

1 2 3

1 2 3

a a a

b b b

c c c

=

4. If ,a b
rr

and rc  be any three vectors, then

[ ,a b
rr

, r
c ] = [ , ,b c a

r r r
] = [ , ,c a b

rr r
]

(cyclic permutation of three vectors does not change the value of the scalar triple product).

Let  1 2 3 1 2 3 1 2 3
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, and .a a i a j a k b b i b j b k c c i c j k= + + = + + = +

rr r
 Then, just by observation

above, we have

[ , ,ab c
rr r

]

1 2 3

1 2 3

1 2 3

a a a

b b b

c c c

=

= a
1
 (b

2
c

3
 – b

3
c

2
) + a

2
 (b

3
c

1
 – b

1
c

3
) + a

3
 (b

1
c

2
 – b

2
c

1
)

= b
1
 (a

3
c

2
 – a

2
c

3
) + b

2
 (a

1
c

3
 – a

3
c

1
) + b

3
 (a

2
c

1 
– a

1
c

2
)

1 2 3

1 2 3

1 2 3

b b b

c c c

a a a

=

= [ , ,b c a
r r r

]

Similarly, the reader may verify that

= [ ,a b
rr

, r
c ] = [ , ,c a b

rr r
]

Hence [ ,a b
rr

, r
c ] = [ , ,b c a

r r r
] = [ , ,c a b

rr r
]

5. In scalar triple product .( )a b c×
rr r

, the dot and cross can be interchanged. Indeed,

.( )a b c×
rr r

= [ , ,a b c
rr r

] = [ , ,b c a
r r r

] = [ , ,c a b
rr r

] = .( )c a b×
rr r

= ( ).a b c×
rr r

6. = [ , ,a b c
rr r

] = – [ , ,a c b
rr r

]. Indeed
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= [ , ,a b c
rr r

] = .( )a b c×
rr r

= .(– )a c b×
rr r

= – ( .( ))a c b×
rr r

= – , ,a c b⎡ ⎤⎣ ⎦
rr r

7. [ , , ] 0.a a b =
rr r  Indeed

[ , , ] [ , , , ]a a b a b a=
r rr r r r

             = [ , , ]b a a
r r r

            .( )b a a= ×
r r r

            .0 0.b= =
r r

(as 0)a a× =
rr r

Note: The result in 7 above is true irrespective of the position of two equal vectors.

10.7.1 Coplanarity of three vectors

Theorem 1 Three vectors a
r

,b
r

 and c
r

 are coplanar if and only if  ( ) 0a b c⋅ × =
rr r .

Proof  : Suppose first that the vectors a
r

,b
r

 and c
r

 are coplanar.

If b
r

 and c
r  are parallel vectors, then, b c×

r r
= 0

r
and so ( ) 0a b c⋅ × =

rr r .

If b
r

 and c
r  are not parallel  then, since a

r
,b
r

 and c
r

 are coplanar, b c×
r r

is perpendicular to a
r

.

So ( ) 0a b c⋅ × =
rr r .

Conversely,  suppose that ( ) 0a b c⋅ × =
rr r . If  a

r  and b c×
r r  are both non-zero, then we conclude that a

r

and b c×
r r  are perpendicular vectors.  But b c×

r r
 is perpendicular to both b

r
 and c

r . Therefore a
r

andb
r

and c
r

 must lie in the plane, i.e. they are coplanar. If a
r = 0, then a

r  is coplanar with any two vectors, in

particular with  b
r

 and c
r . If  ( ) 0b c× =

r r , then b
r

 and c
r  are parallel vectors and so, a

r , b
r

and c
r  are

coplanar since any two vectors always lie in a plane determined by them and a vector which is parallel to
any one of it also lies in that plane.

Note:  Coplanarity of four points can be discussed using coplanarity of three vectors. Indeed, the four

points A, B, C and D are coplanar if the vectors AB, AC and AD
uuur uuur uuur

 are coplanar.

Example 26:  Find ˆ ˆˆ ˆ ˆ ˆ ˆ.( ), 2 3 , – 2 and 3 2a b c if a i j k b i j k c i j k× = + + = + + = + +
r rr r r r .

Solution : We have 

2 1 3

.( ) 1 2 1 –10.

3 1 2

a b c× = − =
rr r

Example 27:  Show that the vectors  ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ2 3 , – 2 3 4 and 3 5a i j k b i j k c i j k= − + = + − = − +
rr r are

coplanar.

Solution : We have 

1 2 3

.( ) 2 2 4 0.

1 3 5

a b c

−
× = − − =

−

rr r
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Hence, in view of  Theorem 1, , anda b c
rr r

 are coplanar vectors.

Example 28:  Find λ if  the vectors   ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ3 , 2 and 7 3a i j k b i j k c i j k= + + = − − =λ + +
rr r are coplanar.

Solution : Since , anda b c
rr r

 are coplanar vectors, we have , , 0a b c⎡ ⎤ =⎣ ⎦
rr r

, i.e.,

 

1 3 1

2 1 1 0.

7 3

− − =
λ

⇒ 1 (– 3 + 7) – 3 (6 + λ) + 1 ( 14 + λ) = 0

⇒ λ = 0.

Example 29:  Show that the four points A, B, C and D with position vectors

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ4 5 , ( ),3 9 4 and 4(– )i j k j k i j k i j k+ + − + + + + + , respectively are coplanar.

Solution : We know that the four points A, B, C and D are coplanar if the three vectors AB, AC and AD
uuur uuur uuur

are coplanar, i.e., if

AB,AC,AD 0⎡ ⎤ =⎣ ⎦
uuur uuur uuur

Now ˆ ˆ ˆˆ ˆ ˆ ˆ ˆAB – ( ) – (4 5 ) – 4 6 2 )j k i j k i j k= + + + = − −
uuur

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆAC (3 9 4 ) – (4 5 ) – 4 3i j k i j k i j k= + + + + = + +
uuur

and ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆAD 4( ) – (4 5 ) – 8 3i j k i j k i j k= − + + + + = − +
uuur

Thus

4 6 2

AB,AC,AD 1 4 3 0.

8 1 3

− − −
⎡ ⎤ = − =⎣ ⎦

− −

uuur uuur uuur

Hence A, B, C and D are coplanar.

Example 30 : Prove that , , 2 , , .a b b c c a a b c⎡ ⎤ ⎡ ⎤+ + + =⎣ ⎦ ⎣ ⎦
r r rr r r r r r

Solution : We have

, , ( ).(( ) ( ))a b b c c a a b b c c a⎡ ⎤+ + + = + + × +⎣ ⎦
r r r rr r r r r r r r

( ).( )a b b c b a c c c a= + × + × + × + ×
r r rr r r r r r r

( ).( )a b b c b a c a= + × + × + ×
r r rr r r r r (as 0c c× =

rr r
 )

.( ) .( ) .( ) .( ) .( ) .( )a b c a b a a c a b b c b b a b c a= × + × + × + × + × + ×
r r r r r r rr r r r r r r r r r r

[ ], , , , , , , , , , , ,a b c a b a a c a b b c b b a b c a⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + + + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
r r r r r r rr r r r r r r r r r r
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2 , , (Why?)a b c⎡ ⎤= ⎣ ⎦
rr r

Example 31 : Prove that  , , , , [ , , ]a b c d a b c a b d⎡ ⎤ ⎡ ⎤+ = +⎣ ⎦ ⎣ ⎦
r r r r rr r r r r

Solution We have

, , .( ( ))a b c d a b c d⎡ ⎤+ = × +⎣ ⎦
r r r rr r r r

        .( )a b c b d= × + ×
r r rr r

        .( ) .( )a b c a b d= × + ×
r r rr r r

        , , , ,a b c a b d⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦
r r rr r r

EXERCISE 10.5

1. Find ˆ ˆ ˆˆ ˆ ˆ ˆif – 2 3 , 2 – 3 and 3 – 2a b c a i j k b i j k c i j k⎡ ⎤ = + = + = +⎣ ⎦
r rr r r

(Answer : 24)

2. Show that the vectors ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2 3 , 2 3 4 and 3 5a i j k b i j k c i j k= − + =− + − = − +
rr r are coplanar.

3. Find λ if the vectors ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ,3 2 and 3i j k i j k i j k− + + + +λ − are coplanar.   (Answer : λ = 15)

4. Let 1 2 3
ˆ ˆˆ ˆ ˆ ˆ ˆ, anda i j k b i c c i c j c k= + + = = + +

rr r
 Then

(a) If c
1
 = 1 and c

2
 = 2, find c

3
 which makes , anda b c

rr r
coplanar (Answer : c

3
 = 2)

(b) If c
2
 = –1 and c

3
 = 1, show that no value of c

1
 can makes , anda b c

rr r
coplanar.

5. Show that the four points with position vectors

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ4 8 12 , 2 4 6 ,3 5 4 and 5 8 5i j k i j k i j k i j k+ + + + + + + + are coplanar.

6. Find x such that the four points A (3, 2, 1) B (4, x, 5), C (4, 2, –2) and D (6, 5, –1) are
coplanar. (Answer x = 5)

7. Show that the vectors , anda b c
rr r

coplanar if  , anda b b c c a+ + +
r rr r r r are coplanar.
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